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Abstract: The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a
robust data processing platform utilizing scientific machine learning (SciML) in conjunction with
comprehensive radiative transfer computations to provide accurate remote sensing reflectances (Rrs

estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability
of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used
to relate measured top of atmosphere radiances and a priori data to estimate posterior probability
density functions and associated uncertainties. A framework of the methodology and implementation
strategy is presented and uncertainty estimates for Rrs retrievals are provided to demonstrate the
approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data.

Keywords: uncertainty; neural networks; Bayesian inversion; remote sensing

1. Introduction

Remote sensing of the ocean is now routinely performed by using instruments de-
ployed on satellite platforms [1,2] to measure the radiance emerging at the top of the
atmosphere and then apply an atmospheric correction (AC) algorithm [3] to remove all but
the water-leaving radiance component [4] or the closely related remote sensing reflectance
(Rrs). From the Rrs determined in the AC step, various ocean color products can be inferred,
such as chlorophyll-a concentration [5], suspended particle matter [6], turbidity, and phyto-
plankton abundance [7]. Water quality is crucial to life in nearby regions [8,9], so it is of
the utmost importance that measurement data with low bias and low uncertainty can be
obtained. The uncertainty associated with a measurement characterizes the dispersion of
the values that could reasonably be attributed to the property being measured [10–12]. In
this paper, the metric used to express uncertainty associated with a measurement will be
the standard deviation.

Several AC algorithms have have been developed to estimate the water-leaving radi-
ance and achieved reasonable results in open ocean areas where the water-leaving radiances
at near-infrared (NIR) wavelengths are negligible. Significant issues remain however; in
coastal waters, which are not black in the NIR, negative water-leaving radiances are fre-
quently produced by traditional AC algorithms [13,14]. In addition, aerosols in coastal
areas often dramatically differ from those encountered over the open ocean, so any realistic
AC approach should take into account the diversity of atmospheric and oceanic conditions
encountered in such complex environments. Turbid waters, whitecaps, and sunglint can
also lead to unreliable results. Various attempts to improve AC algorithms have been
proposed, such as (i) using a turbid water flag to switch between correction algorithms
depending on the region [15], (ii) changing the bio-optical model in an iterative manner [16],
(iii) determining atmosphere–ocean properties simultaneously [17], (iv) employing a multi-
band approach [18], (v) incorporating hyperspectral data [19], (vi) optimizing for sunglint
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through the use of a polynomial function [20], and (vii) using a coupled ocean/atmosphere
inversion scheme based on neural networks [21]. AC algorithms that produce the highest
quality results often use several of these improvements in conjunction to form a more
complete model of the ocean and atmosphere.

Traditional AC approaches typically do not provide uncertainty estimates, which
should be included, however, to gain confidence in retrieved results. Recently, some studies
have discussed uncertainty issues based on optimal estimation (Bayesian inversion) [22–24].
Algorithms based on neural networks, such as C2RCC [25] and SWARM [26], provide
uncertainties based on a comparison of radiative transfer model simulations and IOP
inversions of the training datasets. These uncertainties reflect the difference between
estimated ocean color retrievals and training simulations. Another approach is to use an
ensemble of neural networks [27] with differing initializations to perform spectral inversion.
These approaches for quantifying retrieval uncertainty rely heavily on the capability of
algorithms to produce good match-ups between simulations and training data, as poor
match-ups will lead to larger uncertainties. In two recent papers [28,29], the authors
discuss steps to quantify pixel-level uncertainties using a derivative approach to propagate
uncertainties through the Rrs retrieval process, primarily focusing on uncertainties arising
from atmospheric correction. This approach allows one to account for uncertainties from a
wide range of sources, but, in practice, not all source uncertainty information is available
and several estimates and assumptions about the system need to be made.

The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART)
approach utilizes scientific machine learning (SciML) in conjunction with radiative transfer
computations of the coupled atmosphere–water system to perform the AC step and retrieve
water products from the resulting Rrs estimates [14]. The OC-SMART data processing
platform employs a radiative transfer model for the coupled atmosphere–water system,
AccuRT [30], that accounts for a variety of atmospheric and oceanic conditions likely to be
encountered in nature. The OC-SMART approach resolves the negative water-leaving radi-
ance problem, and is used to retrieve aerosol optical depths and remote sensing reflectances
(Rrs) as a function of wavelength on a pixel by pixel basis. These Rrs estimates are then
used to infer inherent optical properties (IOPs), including absorption coefficients due to
phytoplankton, detritus, and Gelbstoff, and backscattering coefficients due to particulates.
However, these retrieved IOPs do not contain uncertainty estimates at present. To address
this shortcoming, in this paper we focus on how to quantify uncertainties in retrieval
parameters produced by OC-SMART. Since the accuracy of the remote sensing reflectance
Rrs is critical to obtain high-quality water IOPs, our main target in this paper is to determine
Rrs uncertainties associated with errors in measurements and a priori information. We chose
to focus on a Bayesian inversion approach because of its ability to estimate uncertainties on
a pixel by pixel basis and its flexibility to being updated if and when new a priori and/or
measurement error information becomes available.

Section 2 presents an overview of OC-SMART in regards to its methods, advantages
compared to previous approaches, such as C2RCC and SWARM, and limitations. Section 3
presents the methodology that allows us to quantify uncertainties, starting with an introduc-
tion to Bayesian inversion (Section 3.1) and continuing to discuss the key elements involved
in the uncertainty estimation, including a convergence check and computation of the Ja-
cobian (Section 3.1), measurement errors (Section 3.2), a priori determination (Section 3.3),
and experimental setup (Section 3.5). Application of our methodology to estimate uncer-
tainties associated with Rrs is provided in Section 4 for various regions and several sensors.
Section 5 contains discussion of results, conclusions, and future goals.

2. OC-SMART
2.1. Overview

To garner meaningful information about water properties from satellite ocean color
measurements, atmospheric and water surface effects must be accounted for. This task has
historically been accomplished by taking the total radiance at the top of the atmosphere
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(TOA), Lt and then subtracting the contributions from Rayleigh scattering, aerosol scat-
tering and absorption, surface whitecaps, and sunglint to arrive at only the contributions
transmitted upward through the air–water interface due to scattering by pure water and
embedded constituents in the water column. This approach works reasonably well in open
ocean areas where aerosol and water properties are well characterized, but breaks down
in the presence of complex coastal water and aerosol conditions and frequently lead to
unreliable results including negative water-leaving radiances in up to 30% of pixels [14].

To overcome these problems, a new approach, focused on coastal areas, was in-
vented [13] and this methodology was further developed to construct global AC and ocean
property retrieval algorithms [14]. Instead of using a traditional AC approach, the radiative
transfer Equation (RTE) pertinent for the coupled atmosphere–water system was solved to
obtain the required radiances [13,14]. Then a machine learning neural network implicit AC
algorithm that takes advantage of the similarity in spectral shape of the Rayleigh-corrected
TOA radiance, Lrc, and the water-leaving radiance, Lw, was developed to derive Lw directly
from the Lrc without an explicit AC step. This approach is advantageous because it does
not rely on subtraction of aerosol radiance contributions like in typical AC algorithms.
Global application of this spectral matching approach requires RT simulation datasets for
a significant variety of atmospheric and marine conditions. To this end, six atmospheric
profiles were used including the US standard model, mid-latitude summer and winter
models, sub-arctic summer and winter models, and a tropical model. A variety of aerosol
model packages [31,32] were used to develop the implicit machine learning global AC
algorithm. In addition, inherent optical properties (IOPs) of the water were derived from a
combination of the three bio-optical models, those being the modified GSM model [33], the
modified CCRR model [34], and the MAG model [35]. Details of the modifications made to
the original models are described elsewhere [14].

2.2. Neural Network Training

It has been demonstrated that multilayer, feed-forward neural networks with one
or more hidden layers and a non-linear activation function can approximate non-linear
functions [36,37]. This capability is suitable for solving our inverse problem of deriving
the water-leaving radiance Lw or the remote sensing reflectance (Rrs) from the Rayleigh-
corrected TOA radiance Lrc. To make the MLNN training dataset representative of a variety
of atmospheric and ocean conditions, a statistical study was performed on the 8-day aver-
aged 4 km spatial resolution of global MODIS Aqua L3 data from 2011 to 2015. Radiative
transfer simulations based on 100,000 combinations of parameter ranges consistent with
available observational data [14] allowed us to generate a synthetic dataset of Rayleigh-
corrected radiances and corresponding remote sensing reflectances. This synthetic dataset
was then divided into two independent groups, a training group (90,000 data points) and a
validation group (10,000 data points). The training group was used to optimize the weights
and biases of the neural network and the validation group was used to validate the neural
network after the training was finished.

2.3. Algorithm Validation

The performance of our MLNN algorithms was first evaluated with a synthetic dataset.
We randomly selected 90% of the synthetic dataset to train the (Rrs) neural networks, the
remaining 10% of the data were used to evaluate the trained neural networks. For the Rrs
MLNN the R2 was higher than 0.993 for all visible bands (412, 443, 488, 531, 547, 667, and
678 nm) and the APD was <5.4%. These results imply that the Rrs MLNN algorithms have
learned the radiative transfer inversion process very accurately. In other words, they have
learned the spectral relationship between Lrc(λ) and Rrs(λ). The Rrs MLNN algorithm was
also validated by comparing its retrieval performance to SeaDAS NIR, SeaDAS NIR/SWIR,
and C2RCC algorithms for a large set of ocean color data. For water-leaving radiance
retrievals, the MLNN algorithm has the best performance, especially in the blue bands. On
average, at 412 nm, the MLNN algorithm reduced APD by 13.4%, 9.6%, and 8.8% compared
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with the NIR, NIR/SWIR, and C2RCC algorithms, respectively. Furthermore, the NIR
algorithm produced more than 17% negative nLw values in blue and red bands and the
NIR/SWIR algorithm produced approximately 15% negative nLw values in those bands.
In contrast, our neural network-based MLNN (OC-SMART) algorithm and the C2RCC
algorithm did not produce any negative nLw values.

2.4. Application

Currently OC-SMART supports ocean color data retrievals from 11 multi-spectral and
hyper spectral sensors onboard satellites operated by the National Aeronautics and Space
Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA),
the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), the
Korea Institute of Ocean Science and Technology (KIOST), and the China Meteorological
Administration (CMA), which include SeaStar/SeaWiFS (NASA), MODIS/Aqua (NASA),
SNPP/VIIRS (NASA/NOAA), ISS/HICO (NASA), Landsat8/OLI (NASA), DSCOVR/EPIC
(NOAA), Sentinel-2/MSI (ESA), Sentinel-3/OLCI (ESA), GCOM-C/SGLI (JAXA), COMS/
GOCI (NASA), and FengYun-3D/MERSI (CMA). The performance of OC-SMART was
first tested using an independent synthetic testing dataset. Then the ocean color products
retrieved by OC-SMART were validated against in situ measurements from MOBY [38],
SeaBASS [39], and AERONET-OC [40] data for several sensors.

As alluded to in Section 1, it is important to address uncertainties on a pixel by pixel
basis for satellite retrievals to gain confidence in the inferred results. This task is difficult
for a neural network designed as a regressor, which generally returns a single predicted
value instead of a probability distribution. To form uncertainty estimates on a pixel by
pixel basis we have adopted a Bayesian approach in which uncertainties of measured
TOA radiances and a priori information are used to quantify uncertainties in the retrieval
parameters delivered by OC-SMART. This approach is described in detail in Section 3 with
a summary of the processing chain illustrated in Figure 1 of Section 3.5 and with application
of this approach shown for various regions and several sensors in Section 4.

Figure 1. Framework for formulation of the uncertainty estimations applied to OC-SMART.

3. Methodology for Quantifying Uncertainties
3.1. Bayesian Inversion

The Bayesian approach is summarized in this Section [24,41,42]. To generate uncer-
tainties for each individual pixel Bayesian inference utilizes measured TOA radiances and
a priori data to estimate posterior probability density functions and associated uncertainties.
Bayes’ theorem can be expressed as:

P(x|y) = P(y|x) · P(x)
P(y)

. (1)

Here P(x|y) describes the posterior probability density function (pdf) of the state parame-
ters assembled in the vector x given the measurements assembled in the vector y. P(y|x)
describes y if the state were x, P(x) is the estimate of the probability of x before the y data
are observed. Bayes’ theorem allows a process to inversion by updating P(x) with the
measurement pdf P(y|x) to calculate P(x|y).
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Experimental error is frequently described by a normal distribution [41]. Therefore,
for simplicity and convenience, we will assume that each pdf is a Gaussian distribution,
which, for an arbitrary vector z, can be expressed as:

P(z) =
1

(2π)1/2[Sz]1/2 exp[−1
2
(z− ẑ)TS−1

z (z− ẑ)]. (2)

Here, ẑ is the expected value of z and Sz is the covariance matrix. If the forward model
F(x) can be linearized, then we have

y = F(x) + e ≈ Jx + e (3)

where J is the Jacobian matrix [see Equation (11)] and e represents random measurement
uncertainty. In the linear case, we can obtain an explicit retrieval, such as the expected
value, by choosing a suitable state, such as the most probable state determined from the
posterior pdf P(x|y). We do not expect our problem to be linear, but Equation (3) introduces
the Jacobian which will be used in the general non-linear case. Hence, in the non-linear
case we proceed as follows.

Taking the logarithm of Equation (1) we have:

2 ln P(x|y) ∝ ln P(y|x) + ln P(x). (4)

Again, if all pdf’s are assumed to be Gaussian, then Equation (4) can be written (see
Appendix A for a derivation)

ln[P(x|y)] ∝ (y− F(x))TSe
−1(y− F(x)) + (x− xa)

TSa
−1(x− xa) (5)

where F(x) is the non-linear forward model, Se is the measurement error covariance
matrix, and Sa is the a priori covariance matrix [41,42]. The right hand side of Equation (5)
represents the cost function which must be minimized in order to solve the inverse problem.
In the non-linear case an explicit solution is not available. The solution can be determined
iteratively using the Gauss–Newton method:

xi+1 = xi + (JT
i Se

−1Ji + Sa
−1)−1[JT

i Se
−1(y− F(xi))− Sa

−1(xi − xa)]. (6)

Upon convergence to the state vector x, the posterior error covariance matrix becomes:

Ŝ(x) = (J(x)TSe
−1J(x) + Sa

−1)−1. (7)

The evaluation of each of these matrices is discussed in the following sections. By taking
the square root of the diagonal elements of Ŝ(x), we arrive at the standard uncertainty
estimate of the posterior:

σ =
√

diag(Ŝ(x)). (8)

Equation (6) implies that the state vector x is changed iteratively until convergence
is reached. This optimal estimation process can be time consuming and computationally
taxing, and may not converge if the initial guess of x is too far from the true value. As
explained in Section 3.1.1 below, the OC-SMART approach uses a multi-layer neural
network (MLNN) to solve the inverse problem. The benefit of this approach is that once the
neural network is properly trained it should give a result that is as good as that obtained by
the Gauss–Newton method, but in a significantly shorter computational time. The MLNN
approach solves the inverse problem (rather than iteratively as in the Gauss–Newton
method) by a training procedure that typically involves the solution of numerous non-
linear inversion problems using the gradient descent method to optimize the weights and
biases in the neural network (see Equation (10) below).

For our purposes, sensor L1B calibrated radiances and sun-satellite geometry data
are processed by OC-SMART to yield the desired retrieval parameters. These L2 retrieval
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parameters are inserted into the forward model and used to compute simulated Rayleigh-
corrected TOA radiances, as explained in some detail in Section 3.1.1 below. The difference
between the simulated and measured radiance is calculated for all wavelengths and if
the mean of these differences is lower than an acceptable threshold of 10% we consider
the retrieval parameters for this pixel to be converged, as illustrated in Figure 2. The
application of this convergence check indicates that pixels for which the retrieval values
have not converged are usually found in optically complex areas, such as bays and inlets,
as well as in the proximity of cloud-contaminated pixels.

Figure 2. The difference between simulated Rayleigh-corrected TOA radiances and measured
Rayleigh-corrected TOA radiances from MODIS represented as a percentage for (Top Left) 412 nm,
(Top Right) 531 nm, and (Bottom Left) 667 nm. (Bottom Right) A convergence map of OC-SMART
output Rrs. In this image, over 95% of the retrieved Rrs are converged (shown in blue color). Zones
of non-convergence, shown in red, are primarily located in coastal bays and near areas of heavy
cloud cover.

3.1.1. Convergence Check

As alluded to above, sensor L1B Rayleigh-corrected radiances and sun-satellite geometry
data comprise the measurement vector y used as input to OC-SMART, which after processing,
will return L2 data as retrievals as explained elsewhere [13]. Using MODIS as an example case,
we used reflectance measurements in 8 channels (412, 443, 488, 531, 547, 667, 748, and 869 nm),
and 3 geometry angles (solar zenith angle, sensor viewing angle, and relative azimuth angle)
as the input layer elements (a total of 11 input elements). A specific MLNN was constructed
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and trained to retrieve Rrs estimates at these eight wavelengths. The transfer (activation)
function of the neurons was taken to be the hyperbolic tangent function:

f (x) =
2

1 + exp[−2x]
− 1 =

ex − e−x

ex + e−x = tanh(x). (9)

In the output layer, a linear transfer function is used to link the hidden layers to the output.
The exact expression of this MLNN can be written as

ym = b4,m +
N3

∑
l=1

w4,ml · f

{
b3,l +

N2

∑
k=1

w3,lk · f
[

b2,k +
N1

∑
j=1

w2,kj · f
(

b1,j +
N0

∑
i=1

w1,ji · xi

)]}
(10)

where xi, i = 1, . . . , N0 is an element in the input layer.
It is important to note that if the goal is to make a retrieval of state parameters directly

from TOA reflectance measurements, then the input parameters xi in Equation (10) are the
measured TOA reflectances at the chosen sensors channels plus the three solar/viewing ge-
ometry angles, while the output parameters ym are the desired retrieval (state) parameters,
which, in our above example case, are the Rrs estimates in the eight MODIS channels. We
shall refer to this MLNN as R2P (Radiance→ Parameter) for short.

On the other hand, if the goal is to use the MLNN [Equation (10)] as a fast interpolator
to obtain the TOA radiances and associated Jacobians, then the input parameters xi should
be the state parameters and the solar/viewing geometry, and the output parameters ym
should be the TOA radiances [42]. We shall refer to this MLNN as P2R (Parameter →
Radiance) for short.

In Equation (10), w1,ji, w2,kj, w3,lk, and w4,ml are the weights of the three hidden layers
and the output layer, and b1,j, b2,k, b3,l , and b4,m are the biases of the three hidden layers
and the output layer. The weights and biases are to be determined by the training. f is
the hyperbolic tangent function in Equation (9). ym is the mth element in the output layer,
which, in the P2R case, consists of the atmospheric and water IOP retrieval parameters
retrieved by OC-SMART. As explained at the end of Section 3.1, the P2R MLNN was
used to compute TOA radiances from the retrieval parameters, and a comparison of these
computed TOA radiances with the measured ones was used to check the convergence of
the retrieval parameters produced by OC-SMART.

3.1.2. Evaluation of the Jacobian

The Jacobian matrix in Equations (3) and (7) for an m× n matrix can be expressed as

J =


∂F(x1)

∂x1
. . . ∂F(x1)

∂xn
...

. . .
...

∂F(xm)
∂x1

. . . ∂F(xm)
∂xn

 (11)

where F(x) is the forward model and x is the state vector [see Equation (3)]. For the Jaco-
bians we need the partial derivatives in Equation (11), which can be calculated analytically
or closely approximated by using finite differences. In our testing we found that the two
methods produced identical values for uncertainties out to several decimal places. Because
of the closeness of values produced by the two methods, the finite difference method was
chosen for use in this paper, because it was found to reduce the computation time.

3.2. Measurement Error

The measurement error covariance matrix Se stems from the uncertainties of the
measurement instrument. Rrs is derived from the Rayleigh-corrected TOA radiances Lrc
which are measured by ocean color satellite sensors. Our measurement error would then
come from the per-pixel radiometric uncertainty for satellite L1B data. This information is
currently not available because it is difficult to model noise from photonic, detector, and
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electronic sources [43]. Therefore, we assumed the value of one percent for radiometric
uncertainty because it is consistent with Gaussian noise added to the OC-SMART neural
network training dataset. Details on the neural network training data, such as formation,
testing, and validation are discussed elsewhere [14].

The measurement error covariance matrix Se is calculated by taking the square of 1%
of the Rayleigh-corrected TOA radiances Lrc.

Se = 0.012 × Lrc
2. (12)

This value is likely a conservative estimate of radiometric uncertainty. The use of signal
to noise ratios as an adequate uncertainty has been criticized [43,44] because it is not
rigorously quantified and does not provide any information on possible spectral covariance
in the radiometric noise. These are valid concerns and are topics of ongoing investigations
within the ocean color remote sensing community. We have chosen to define measurement
error as stated above because it is applicable to all sensors compatible with OC-SMART.

3.3. A Priori Estimation

The a priori stems from our general knowledge of the uncertainties, and can be esti-
mated as a covariance matrix

Sa = σa
2. (13)

where σa represents the standard deviations of the a priori. To estimate σa, we compare the
MLNN predictions (Figure 3) with a training dataset comprised of synthetic data. From this
comparison, we take the average percent error (APE) for each Rrs wavelength band. These
APEs are multiplied by the corresponding retrieval values xRet to form σa = APE× xRet.
This approach follows the standard procedure for choosing good a priori values [45,46].
Using this estimate of σa we can rewrite Equation (13) as:

Sa = APE2 × xRet
2. (14)

As a note, the a priori estimate can be expressed in different ways as it is simply a repre-
sentation of our prior knowledge. We have chosen to define the a priori as stated above.
If, however, a better (more complete) knowledge of the uncertainty becomes available the
estimate of the a priori can be adapted to accommodate this updated information.

Figure 3. Verification of the remote sensing reflectance (Rrs) at 412, 443, 488, 531, 547, 667, 678, and
748 nm retrieved by the MLNN algorithm against a synthetic testing dataset (N = 10,000).
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3.4. Special Cases

Let us now consider the special case of Equation (7): Ŝ(x) = (J(x)TSe
−1J(x)+Sa

−1)−1.
If the measurement error term, J(x)TSe

−1J(x), approaches zero then Equation (7) becomes:

Ŝ(x) ≈ Sa. (15)

This would cause the standard uncertainty estimate of the posterior to become:

σa ≈
√

diag(Sa.) ≈ APE× xRet. (16)

This simplified case, i.e., Equation (16), is in essence the same as the approach used by the
C2RCC [25] and SWARM [26] algorithms to attach uncertainties to IOPs. If the diagonal
elements of the measurement error term are positive then:

diag[(J(x)TSe
−1J(x) + Sa

−1)−1] < diag[Sa], (17)

which would lead to a smaller uncertainty than implied by Equation (16). From testing we
found that the partial derivative of the forward model, F(x), and state vector, x, produced
values near zero causing the measurement error term to result in a positive value near zero.
This circumstance also makes it less important to have the best approach for forming the
measurement error covariance matrix term, Se, as it will be effectively neutralized by the
Jacobian, J(x).

3.5. Experimental Setup

Figure 1 shows a flowchart of the processing chain described in Sections 3.1–3.3. For an
example case, such as that described in Section 4.1, MODIS L1B radiances and sun-satellite
geometry data are used as inputs to OC-SMART which will then produce L2 retrievals of
Rrs used to form the a priori matrix Sa, and Rayleigh-corrected radiances used to form the
measurement error matrix Se. These matrices, along with the Jacobian, are used to form
the posterior error covariance matrix Ŝ(x) [see Equation (7)], and by taking the diagonal of
this matrix we arrive at an estimate of corresponding Rrs uncertainties. This experimental
setup can be viewed as a framework that can easily be adapted to other sensors, such as
those listed in Section 2.4, by substituting those sensors TOA radiance and geometry data
in place of MODIS data.

4. Case Studies and Discussion
4.1. Application to MODIS

Using MODIS Aqua L1B calibrated radiances and sun-satellite geometry data with
1 km resolution as inputs to OC-SMART, we produced L2 retrievals of Rrs and corre-
sponding Rrs uncertainty estimates. For demonstration purposes, we now consider
three different geographical locations. These locations are the east coast of the United
States (Figures 4 and 5), the Gulf of Mexico (Figures 6 and 7), and the East Coast of China
(Figures 8 and 9). Figures 4–8 show RGB images of the locations being considered, as well
as Rrs estimates with error bars for these locations. A more holistic view of the Rrs estimates
and their corresponding uncertainties (standard deviations) and relative uncertainties
(ratio of the uncertainty to the measured quantity) are shown for several wavelengths in
Figures 5–9.
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Figure 4. (Left panel) Locations of interest off the east coast of the United States on 9 March 2016
(MODIS). ST1 (Red) is located in the optically complex Chesapeake bay region, ST2 (Blue) is located in
near coastal waters, and ST3 (Black) is located in the open ocean. (Right panel) Rrs with uncertainties
for three locations of interest and for several wavelengths.

Figure 5. Remote sensing reflectance data from MODIS sensor (Left), corresponding standard
uncertainties (Center), and relative uncertainty (Right) for several wavelengths off the east coast
of the United States on 9 March 2016. Relative uncertainty tends to be consistent for all pixels in
a wavelength.
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Figure 6. (Left panel) Locations of interest in the Gulf of Mexico on 4 March 2020 (MODIS). ST4 (Red)
is located in the central gulf region while ST5 (Blue) is located in the coastal waters of southwest
Florida. (Right panel) Rrs with uncertainties for two locations of interest for several wavelengths.

Figure 7. Remote sensing reflectance data from MODIS sensor (Left), corresponding standard
uncertainties (Center), and relative uncertainty (Right) for several wavelengths over the gulf of
Mexico on 4 March 2020. Elevated values near Cuba and the Bahamas are due to shallow waters
where reflection from the ocean bottom should be included (ignored in the current version of
OC-SMART).
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Figure 8. (Left panel) Locations of interest off the east coast of China on 19 March 2016 (MODIS).
ST6 (red) is located between Korea and western Japan in the Sea of Japan, ST7 (blue) is located in the
East China Sea near the Korean peninsula. (Right panel) Rrs with uncertainties for two locations of
interest for several wavelengths.

Figure 9. Remote sensing reflectance data from MODIS sensor (Left), corresponding standard
uncertainties (Center), and relative uncertainty (Right) for several wavelengths near the Korean
peninsula and sea of Japan on 19 March 2016.

Figure 4 shows an RGB image of the eastern coast of the United States along with
three locations of interest. ST1 and ST2 are located in optically complex waters off the
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coast, with ST1, in particular, being located in the Chesapeake Bay region where waters are
extremely turbid. This turbidity is reflected by the elevated Rrs in the green bands for ST1.
We would expect to see larger uncertainties in bands with weaker signals because noise
is more prevalent. As waters are primarily blue, these larger uncertainties due to noise
should be more prevalent in the green and red bands. However, the right panel of Figure 4
tells a different story. Here, we see that the largest uncertainties are more closely associated
with larger Rrs estimates.

To explain this behavior, let us first examine the terms of the posterior error covariance
matrix Equation (see Equation (7)). As explained in Section 3.4, the measurement error
covariance matrix term, Se is effectively neutralized by the Jacobian leading to the a priori
term dominating to such an extent that if the measurement error term were considered
to be zero the calculation of uncertainty would not be significantly changed, as seen in
Figure 10B. In fact this scenario would be in line with the approach used by the C2RCC [25]
and SWARM [26] algorithms to attribute uncertainties to IOPs. Without the measurement
term, the posterior error covariance matrix can in essence be simplified to a weighted
average percent difference between estimated Rrs retrievals and training simulation data.

Figure 10. Rrs uncertainties for the three locations identified in Figure 4 for several wavelengths.
Panel (A) shows the actual calculated uncertainty. Panel (B) shows the same uncertainty calculation
but with the measurement term considered to be zero for all values. Panel (C) shows the uncertainty
calculation if the APEs of all wavelengths were set to 10%.

With this situation in mind now consider our definition of the a priori in Equation (14).
We have defined it to be a combination of the retrieval parameters (Rrs estimates in this
case) and average percent errors (APEs), as determined in Section 3.3. Equation (14) implies
that the largest uncertainties should occur in bands where both the Rrs and the APEs are
large. The APEs associated with each Rrs wavelength in Figure 3 are higher for blue bands
than for red bands with green bands exhibiting the lowest APEs, meaning that even if the
Rrs estimates were equal for blue and green bands we should expect larger uncertainty
estimates in the blue bands. This finding is consistent with the findings reported by
others [22,47] based on an optimal estimation approach. Equation (14) also explains why
we are seeing small uncertainties in red bands, because the Rrs estimates are almost always
lower in those bands than in the blue and green bands.

Figure 10 shows the Rrs and uncertainty estimates for the three locations identified
in Figure 4. Figure 10A shows the calculated uncertainties estimates while Figure 10B
shows the same uncertainty calculation if the measurement error term was set to zero. As
stated above, setting the error measurement term to zero hardly makes an impact on the
uncertainties. Figure 10C shows the uncertainty calculation if all the APE values were set
to 10%, which would imply a poorer match-up of the trained MLNN to the synthetic data.
On the other hand, lower APEs would have implied a better match-up and would lead
to lower uncertainty estimates. This finding emphasizes the importance of a well-trained
neural network. The a priori plays a very significant role in determining the uncertainty
estimate and is largely tied to the value of Rrs at each pixel. This situation leads to a nearly
constant relative uncertainty which closely mirrors the APE value for each wavelength.
Had the measurement error term played a larger role, we would have expected to see more
variability in the relative uncertainty.
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When looking at the Gulf of Mexico in Figure 6 we can see a similar shape of the Rrs
estimate curves for ST4 and ST5, as was seen in Figure 4, for the ST3 location in the open
ocean. The ST5 Rrs curve, however, has an elevated green band profile comparable to,
though not as dramatic, as that of ST1 in the Chesapeake Bay. The uncertainties for ST5
demonstrate the importance of the APE values. Even though we see higher Rrs estimates in
green bands than blue, the blue bands still have larger uncertainties because of their higher
APEs. OC-SMART is based on simulated datasets for optically deep water and while it can
be applied to coastal regions where shallow waters are present, the waters must be optically
deep for OC-SMART to return accurate simulated radiances. For this reason we are able to
make realistic simulations at ST5 where waters are turbid and, therefore, optically deep
but not near the Bahamas where the waters are clearer and, therefore, optically shallower
even though the areas have similar physical ocean depths. For those interested in what
optically shallow results might look like we refer to Figure 7, where a drastic difference in
Rrs and uncertainty is evident near the Bahamas, Cuba, and the Yucatan Peninsula where
the shallow, clear waters of these regions allow for light to be reflected off the bottom of the
ocean leading to enhanced Rrs estimates.

The RGB image in Figure 8 shows a green complexion around ST7 near the Korean
peninsula which unsurprisingly leads to the elevated green bands of the Rrs curve. The Rrs
estimate curve at ST6 has a similar shape to that of ST3 in the open ocean although the Rrs
estimates are lower at ST6 than those seen in Figures 4 and 6, as this region is closer to the
coast and has more complex waters as can be observed in Figure 9.

4.2. Application to Other Sensors

The methodology laid out above can easily be applied to other ocean color sen-
sors. Modifications to the experimental setup described in Section 3.5 are minor and
include modifying the forward model to be suitable for a specific sensor and adjusting
the wavelength bands and APEs. Shown here are results from the OLCI Sentinel-3 sen-
sor off the Iberian peninsula (Figures 11 and 12) and the VIIRS sensor over the Atlantic
ocean (Figures 13 and 14). Similar to MODIS sensor data in Figure 8, OLCI sensor data
in Figure 11 show elevated green bands for optically complex coastal water. In this case,
run-off from two prominent rivers lead to the results for ST8 while larger blue band values
are observed in the open ocean region of ST9. A compilation of Rrs estimate retrievals and
uncertainties for this region are provided in Figure 12. In the RGB image of Figure 13, VIIRS
sensor data for ST10 and ST11 closely match those of ST2 and ST3 in Figure 5. Despite the
presence of sunglint in the region Rrs retrievals and uncertainties are largely unaffected as
can be seen in Figure 14.

Figure 11. (Left panel) Locations of interest near the Iberian peninsula on 21 January 2022. ST8 (red)
is located in the Golfo de Cadiz near the delta of two prominent rivers, ST9 (black) is located west of
Lisbon. (Right panel) Rrs from OLCI Sentinel-3 sensor data with uncertainties for two locations of
interest for several wavelengths.
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Figure 12. Remote sensing reflectance data from OLCI Sentinel-3 sensor (Left), corresponding
standard uncertainties (Center), and relative uncertainty (Right) for several wavelengths near the
Iberian peninsula on 21 January 2022.

Figure 13. (Left panel) Locations of interest off Northeast coast of the United States on 2 May 2021.
ST10 (red) is located south of Nova Scotia in optically complex waters, ST11 (black) is located in an
open region of the Atlantic ocean. (Right panel) Rrs from VIIRS sensor data with uncertainties for
two locations of interest for several wavelengths.
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Figure 14. Remote sensing reflectance data from VIIRS sensor (Left), corresponding standard uncer-
tainties (Center), and relative uncertainty (Right) for several wavelengths off the Northeast coast of
the United States of America on 2 May 2021.

The locations of interest shown for various regions and several sensors are intended to
provide insight on a variety of water conditions beyond the open ocean where OC-SMART
and other AC algorithms perform best. The OC-SMART approach currently uses a large
ensemble of IOP realizations in order to represent open ocean water, as well as turbid
coastal waters. It is designed to provide a smooth, seamless transition between clear open
ocean and turbid coastal waters. Although adequate for many coastal regions, additional
IOP data may be needed to obtain more accurate results in some optically complex coastal
regions. To improve the performance of OC-SMART in such regions, more IOP data
could be added to improve the response/output of OC-SMART. Introducing additional
IOP modeling data is also expected to improve the uncertainty estimations discussed in
this paper as it would allow use of more adaptive a priori assessments and measurement
error calculations.
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5. Conclusions and Perspectives

We have successfully implemented a method based on Bayes’ theorem to estimate
uncertainties associated with OC-SMART remote sensing reflectance (Rrs) retrievals. The
OC-SMART platform uses a multi-layer neural network to solve the inverse problem, which
saves significant calculation time when compared to typical Bayesian (optimal estimation)
approaches. This methodology was applied to MODIS, OLCI, and VIIRS sensor data in
various optically complex regions and Rrs retrievals with corresponding uncertainties were
presented and discussed for these locations. The uncertainty estimates were dominated by
the a priori term, leading to a strong connection between large uncertainties and large Rrs
and APE values.

This framework for uncertainty estimation could be expanded to include other OC-
SMART retrievals, such as aerosol optical depth, chlorophyll concentration, absorption
coefficients, and backscattering coefficients. The inclusion of uncertainty estimates for
aerosol optical depths, in particular, would involve only minor changes to the methods
described in this paper, namely adjustments to the APE values in the a priori term. For other
retrieval parameters, such as chlorophyll concentrations and water IOPs new considerations
will have to made for determining measurement errors and a priori, as well as calculations
of the Jacobian. MODIS, OLCI, and VIIRS sensor data were used in this paper, but the
calculations of uncertainties could also be performed for any sensor that OC-SMART is
compatible with those mentioned in Section 2.

Improvements could be made to our estimations by obtaining better information on the
a priori. In our case, such improvement would imply a better match-up of MLNN retrievals
to synthetic data which could be achieved by implementing additional IOP data to the
training dataset of the neural network. We could also improve estimations if uncertainties
associated with satellite radiance measurements were available. Such information would
allow us to apply measurement error terms more accurately than assuming one percent
Gaussian noise for all bands. Future work would include an expansion of our approach
to encompass all applicable OC-SMART retrievals and to integrate uncertainty estimation
into the currently available Python OC-SMART package and plug-ins.
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Appendix A

Consider a Gaussian distribution, which for an arbitrary vector y, can be expressed as

P(y) =
1

(2π)1/2[Sy]1/2 exp[−1
2
(y− ŷ)TSy

−1(y− ŷ)]. (A1)

and a linearized forward model:

http://www.rtatmocn.com/oc-smart/
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y = F(x) + e ≈ Jx + e. (A2)

If the probability that y lies between y and (y + dy) given x can be described by a Gaussian
pdf then we have (y− Jx = e):

ln[P(y|x)] ∝ eTSe
−1e = (y− Jx)TSe

−1(y− Jx). (A3)

If we assume that our prior knowledge of x can also be described by a Gaussian pdf so xa
is the a priori value of x then we can write:

ln[P(x)] ∝ (x− xa)
TSa

−1(x− xa). (A4)

Substituting these equations into Equation (4) we arrive at the Bayesian solution to the
linear problem:

ln[P(x|y)] ∝ (y− Jx)TSe
−1(y− Jx) + (x− xa)

TSa
−1(x− xa). (A5)

Equation (A5) can be modified for an inverse problem if the forward model is a general
(non-linear) function of the state described and both the measurement error and the prior
estimate error are Gaussian. In this case we can transform Equation (A5) into Equation (5).
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